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The goal of this work is to accurately evaluate large-scale, nonlinear, finite-volume-based fluid dynam-

ics models at low computational cost. To accomplish this objective, this work employs the Gauss–

Newton with approximated tensors (GNAT) nonlinear model reduction method originally presented

in Ref. 1. This technique decreases the system dimension by a least-squares Petrov–Galerkin projec-

tion, and decreases computational complexity by approximating the residual and Jacobian using the

“Gappy POD” method; the latter requires computing only a few rows of the approximated quanti-

ties. This work introduces an efficient implementation of the GNAT method based on a novel “sample

mesh” concept tailored for the finite volume formulation. When the reduced-order model is evaluated,

this approach loads into memory only the subset of the mesh needed to sample the residual and Jaco-

bian. This minimizes required computational resources, communication overhead, and computational

complexity. A post-processing step that employs only the subset of the mesh needed for computing

outputs is also proposed. Results obtained for a one-dimensional shock propagation problem highlight

the method’s capability to decrease solution times by orders of magnitude while retaining high levels

of accuracy, even in predictive scenarios. The application of GNAT to a large-scale, compressible,

turbulent flow problem with over 17 million unknowns illustrates the method’s favorable performance

compared with other nonlinear model reduction techniques (including collocation and discrete em-

pirical interpolation approaches), and speedups exceeding 350 with errors less than 1% are observed.

Finally, results show that the sample mesh enables the GNAT model to use many fewer processors

compared with the full-order simulation.

I. Introduction

Computational fluid dynamics (CFD) tools have become indispensable in many industries due to their
ability to enhance the understanding of complex fluid systems, reduce design costs, and improve the reliability
of engineering systems. Unfortunately, high-fidelity CFD simulations are so computationally expensive that
they can take days to months to complete, even on supercomputers with thousands of cores. As a result,
these simulations are impractical for time-critical applications that also demand the accuracy provided by
high-fidelity CFD models. In particular, applications such as flow control, “in the field” analysis, design
optimization, uncertainty quantification, and system identification require high-fidelity simulations to be
completed orders of magnitude faster than is currently possible.
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Projection-based model reduction methods present a promising approach for realizing this goal. These
methods approximate the high-fidelity model by reducing the number of equations and unknowns describing
it. To do so, they employ a projection process: they compute fast “online” solutions by searching in
a low-dimensional subspace that was computed a priori by expensive “offline” computations. Thus, the
reduced-order model used for fast online computations is characterized by small-dimensional matrices that
are formed by a projection process on the full-order equations.

The computational cost of assembling these small-dimensional matrices scales with the large dimension
of the high-fidelity model; for this reason, projection-based model reduction approaches are efficient primar-
ily for problems where the matrices must be constructed only once or can be assembled a priori. These
include linear dynamical systems with time-invariance,2 linear static systems with operators that are affine
in functions of the input parameters,3,4 and systems with at most quadratic nonlinearities.5–7 Within these
contexts, projection-based model reduction has been successfully applied to problems in aerodynamics8–12

and aeroelasticity13–17 to name only a few.
On the other hand, when projection is applied to linear time-varying systems, linear static systems with

nonaffine parameter dependence, or general nonlinear problems, the resulting ROM is costly to evaluate.
This high cost can be attributed to a well-known performance bottleneck: the full-order nonlinear function
(and possibly its Jacobian) must be computed and subsequently projected for each system solve; the cost of
these operations scales with the large dimension of the original system. To overcome this roadblock, several
approaches have been recently proposed that reduce the computational cost of evaluating the reduced-order
model.

The “empirical interpolation” method developed for linear elliptic and coercive static problems with
non-affine parameter dependence, and for nonlinear elliptic and parabolic coercive problems,18 reduces the
computational cost of evaluating the nonlinear terms by interpolating their values at a few spatial locations
using an empirically-derived basis. A variant of this method uses “best [interpolation] points” and a POD
basis and can be found in Ref. 19. Both of these methods operate at the continuous level, assume the PDE
is elliptic or parabolic, and rely on a finite element discretization. As a result, these methods have limited
applicability to CFD applications that often employ a finite volume discretization and can be characterized
by hyperbolic equations. To this end, researchers have developed several more general approaches that
operate at the semi-discrete level—that is, at the level of the ordinary differential equation (ODE) obtained
after discretizing the PDE in space. These methods can be applied in principle to computational models
arising from any spatial discretization technique (e.g. finite difference, finite element, finite volume).

The trajectory piece-wise linear (TPWL) method20 is one such approach. This technique uses a weighted
combination of different linearized models that are constructed at certain points along a “training” state
trajectory. However, the performance of this method relies very heavily on the chosen linearization points
and weights. Furthermore, since it never queries the original high-fidelity model at non-linearization points,
this method is not typically robust for problems with severe nonlinearities.

Another class of cost-reduction methods reduces the computational cost of evaluating the model by
computing only a few entries of the nonlinear functions; we refer to this as the “function sampling” class
of methods. Within this function sampling class, collocation approaches were first investigated. In Ref. 21,
collocation of the nonlinear equations was carried out, followed by a least-squares solution of the resulting
overdetermined nonlinear system of equations. Similarly, Ref. 22 proposed collocation followed by Galerkin
projection for linear time-varying systems. In contrast to collocation methods, function reconstruction
approaches (also within the function sampling class) use the sampled entries of the nonlinear functions to
approximate the entire nonlinear functions via interpolation or least-squares regression. One such method
reconstructs the nonlinear function in the least-squares sense using the same basis used to represent the state
vector. This approach was developed for general nonlinear problems23 and for nonlinear dynamical systems
with explicit time integration.24 Other approaches include semi-discrete analogs to the empirical and best
points interpolation methods, which have been presented for parameterized nonlinear statics problems25,26

and for nonlinear dynamics problems.25

Unfortunately, the above function reconstruction methods construct approximations in a heuristic man-
ner, and the resulting models lack some basic mathematical properties. Furthermore, these methods have
not yet been demonstrated on finite volume discretizations or aerodynamic analyses. In addition, there have
been minimal demonstrations of the ability of these methods to generate good results on truly large-scale
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problems.1

Ref. 1 introduced a Gauss–Newton with approximated tensors (GNAT) model reduction method that falls
within the category of function reconstruction methods. This approach mitigates the problems listed above
by employing a more systematic mathematical formulation. Specifically, the method employs approximations
that satisfy mathematical properties related to optimality and consistency. This method has demonstrated
the ability to generate solutions with sub-5% error rates and orders of magnitude speedups on nonlinear
problems ranging from structural dynamics to transmission line modeling.27 While promising, this approach
remains in its infancy. In particular, its efficient implementation in computational mechanics codes has been
unresolved. Also, this method has not yet been demonstrated on finite volume problems, aerodynamics
analyses, or truly large-scale problems.

This work presents several advances in the development of the GNAT method that enable it to rapidly
evaluate large-scale, nonlinear, finite volume-based fluid dynamics models. First, this work introduces a novel
“sample mesh” concept that leads to a very efficient computer implementation of the GNAT method for finite
volume problems. In this approach, only the the subset of the original mesh that is required to sample the
nonlinear function (i.e. the sample mesh) is employed for online computations. As a result, the online stage
does not load the unsampled parts of the computational domain into memory. So, this technique minimizes
required computational resources, communication overhead, and computational complexity. Furthermore,
since this sample mesh contains all the required connectivities, boundary conditions, etc., the code treats
this sample mesh as a true CFD mesh. Existing routines and data structures can therefore be used for online
computations. Secondly, this work constitutes the first time any function sampling model reduction method
has been applied to problems discretized by the finite volume method. Finally, this work constitutes the
first time the GNAT method has been applied to a truly large-scale problem (over 106 unknowns).

II. Problem Formulation

II.A. Parameterized nonlinear fluid dynamics problem

Consider an ODE written in state-space form that results from the finite volume semi-discretization of a
partial differential equation (PDE) governing a nonlinear fluid dynamics problem

dy

dt
(t) = F (y(t), t;µ)

y(0) = y0(µ),
(1)

with outputs of interest

z = H (y(t), µ)
= L(µ).

(2)

Here, t ∈ R+ denotes time, y(t) ∈ RN is the (cell-averaged) conserved fluid state, y0 : D → RN is the
initial condition, and z ∈ Rp denotes the outputs that are of primary interest to the analyst. The nonlinear
flux is F : RN × R+ × D → RN , and both H : RN × D → Rp and L : D → Rp provide the mapping to the
outputs of interest. The vector of input parameters (e.g. shape parameters, boundary conditions, etc.) is
denoted by µ ∈ D ⊂ Rd, D is the input parameter domain, and z ∈ Rp represents the outputs that are of
primary interest to the analyst.

II.B. Objective: time-critical prediction

Consider the following objective: given inputs µ? ∈ D, compute approximations to the outputs L̃(µ?) ≈
L(µ?) in a manner that is “fast” in one of the following senses:

1. The evaluation takes a sufficiently small amount of time. This is applicable to near-real-time prediction
applications, where the objective is to compute outputs in a time smaller than some threshold value.
Examples include flow control and “in the field” analysis.

1The exception is Ref. 26, where the authors show orders of magnitude speedup a problem with 8.5× 106 unknowns.
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2. The evaluation consumes a sufficiently small amount of computational resources, as measured by com-
putational cores multiplied by time. This is relevant to many-query applications, where the objective
is to evaluate the model at as many points in the input space as possible, given a fixed amount of time
and processors. Examples include uncertainty quantification and design optimization.

When the number of degrees of freedom N of the high-dimensional model is sufficiently large, solving Eq. (1)
with µ = µ? and computing the corresponding outputs becomes a major obstacle for the stated objective.

Instead, the following two-stage “offline–online” strategy can be employed. In the offline stage, Eqs.
(1)–(2) are solved for ntrain ≥ 1 “training” input configurations Dtrain = {µj}ntrain

j=1 ⊂ D, and results (the
data) are acquired. Then, these data are used to construct a surrogate model for the original parameterized
system that is capable of rapidly reproducing the behavior of the high-dimensional model at arbitrary points
in D. The online stage uses the surrogate model for time-critical predictoin.

In contrast to surrogate modeling techniques such as data-fitting methods (e.g. Kriging, response surfaces)
or methods that omit problem physics (e.g. mesh coarsening), model reduction seeks to achieve real-time
prediction by approximately solving the state equations for the online configuration µ? and then computing
the resulting outputs. The next section provides an overview of the GNAT model reduction method developed
for the purpose of time-critical prediction.

III. Overview of the GNAT model reduction method

To make this paper as self-contained as possible, this section provides an overview of the Gauss–Newton
with approximated tensors (GNAT) method originally presented in Ref. 1.

III.A. Strategy and properties

Model reduction of nonlinear systems is often executed in a somewhat ad hoc manner; as a result, nonlinear
ROMs often lack basic mathematical properties. To avoid this pitfall, the GNAT method employs a strategy
that constructs approximations to meet conditions related to optimality and consistency.

In this approach, if a given model is too computationally expensive for time-critical evaluation, an
approximation is introduced, resulting in another less accurate but (hopefully) more economical model. This
leads to a hierarchy of models characterized by tradeoffs between accuracy and computational complexity.
The approximations are constructed to generate minimal error with respect to the previous model by being
both optimal and consistent.

Optimal approximation: An approximation is optimal if it leads to approximated quantities that minimize
some error measure with respect to the previous model in the hierarchy. This ensures that some measure of
the error monotonically decreases as the approximation spaces expand (a priori convergence). �

Consistent approximation: An approximation is consistent if, when implemented without snapshot com-
pression, it introduces no additional error in the solution at the training inputs. �

As shown in Figure 1, the model hierarchy employed by the GNAT method consists of three computational
models: an original model, and two increasingly “lighter” approximated versions. Each approximated model
is generated by acquiring snapshots during the evaluation of the more accurate model for training inputs,
then compressing the snapshots, and finally introducing the approximation that exploits the compressed
snapshots.

III.B. Fully discrete computational framework

The GNAT method adopts a fully discrete computational framework. That is, the method introduces
approximations after the PDE has been discretized in both space and time. While this may be less convenient
(the reduced-order model cannot be expressed as an ODE), it will enable optimality to be achieved in the
projection approximation; this will be shown in Section III.C.

To this end, consider solving Eq. (1) by an implicit time-integrator. In this case, a sequence of nt (the
total number of time steps) nonlinear problems arises. Each of these nonlinear problems can be written as

Rn(yn+1;µ) = 0 (3)
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Figure 1. Model hierarchy with approximations shown in red.

for n = 1, . . . , nt, with outputs

z = G(y0, . . . , ynt , µ)
= L(µ).

(4)

Here, the superscript n designates the value of a variable at time step n. The operator Rn : RN ×D → RN
is nonlinear in at least its first argument and G : RN × · · · × RN × D → Rp. The state variables yn are
implicitly defined by Eq. (3) given µ and Rn.

For simplicity, consider one instance (one time instance and one set of input parameters) of Eq. (3):

R(y) = 0. (5)

Here, the state y ∈ RN is implicitly defined by Eq. (5), and the mapping R : RN → RN , w → R(w) is
nonlinear. Eq. (5) is considered to be the equations corresponding to the full-order model (tier I in Figure
1).

III.C. Petrov–Galerkin projection

To reduce the dimension of Eq. (5), the GNAT method employs a projection process. This leads to tier II
in the hierarchy. Specifically, an approximate solution ỹ is sought in the affine search subspace y(0) + Y of
dimension ny � N

ỹ = y(0) + Φyyr, (6)

where y(0) ∈ RN is an initial guess for the solution, Φy ∈ RN×ny is a basis (in matrix form) for the subspace
Y ⊂ RN , and yr ∈ Rny are generalized coordinates for the state. Note that the increment in the state
ỹ − y(0) is sought in the subspace Y, not the state itself; this is an important consideration when defining
the basis Φy as will be described in Section III.C.2.

III.C.1. Optimality

In order to solve this overdetermined system, the GNAT method formulates the least squares problem

minimize
ȳ∈y(0)+Y

‖R(ȳ)‖2 (7)

and solves it using the Gauss–Newton method, which is globally convergent under certain assumptions.
Note that the resulting solution is optimal at each time step: it minimizes the tier I residual arising at
each time step over the search subspace. Also, this approach is mathematically equivalent to employing a
Petrov–Galerkin projection with a test basis corresponding to the Jacobian multiplied by Φy (see Ref. 1).

Due to this optimality property, the Gauss–Newton (GN) tier II model has been shown to generate more
accurate results than the more common Galerkin projection, which solves

ΦTyR(y(0) + Φyyr) = 0 (8)

and is not optimal in any sense for general problems.
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III.C.2. Consistency

In order for the projection to be consistent, the basis Φy for the search subspace should be a proper orthogonal
decomposition (POD) basis2 computed with “snapshots” collected while solving the full-order equations
(tier I) at the training inputs. In Ref. 1, consistent snapshots were identified as {yn − yn(0)}nt

n=1 where nt

is the total number of time steps for a given training input. That is, the snapshots used for POD should
correspond to the solution increment at each time step. This is different from the approach typically taken
in the literature, which is to compute a POD basis using (inconsistent) snapshots {yn}nt

n=1.
This work introduces yet another set of consistent snapshots: {yn − y0}nt

n=1, where y0 is the initial
condition3 for the dynamic simulation corresponding to time instance n.

III.D. System approximation

Solving the least-squares problem (7) by the Gauss–Newton method leads to the following iterations: for
k = 1, . . . ,K, solve

p(k) = arg min
a∈Rny

‖J (k)Φya+R(k)‖2 (9)

y(k+1)
r = y(k)

r + α(k)p(k), (10)

where K is determined by the satisfaction of a convergence criterion, y(0)
r = 0, and R(k) ≡ R(y(0) + Φyy

(k)
r )

and J (k) ≡ ∇R
(
y(0) + Φyy(k)

r

)
are the nonlinear residual and Jacobian at iteration k, respectively. The step

length α(k) is computed by executing a line search in the direction p(k) or is set to the canonical step length
of unity. Even though the dimension of the search subspace is small, the computational cost of solving this
nonlinear least-squares problem scales with the dimension N of the full-order model (tier I). The role of the
system approximation (see Figure 1) is to decrease this computational cost.

III.D.1. Optimality

To do so, GNAT uses the optimal Gappy POD data reconstruction method.28 In the context of GNAT,
Gappy POD enables the quantities R(k) and J (k)Φy (one- and two-dimensional tensors, respectively) to be
approximated by computing only a few of their rows. Denoting by I ≡ {i1, i2, . . . , ini} ⊂ {1, . . . , N} the set
of ni “sample indices” for which these functions are evaluated, the restriction operator (̂·) is defined as

ĥ ≡


h1

i1
· · · hpi1

...
. . .

...
h1

ini
· · · hpini

 = PTh, (11)

where P =
[
ei1 · · · eini

]
are selected columns of the identity matrix. Given these sample indices and bases

ΦR ∈ RN×nR and ΦJ ∈ RN×nJ , GNAT approximates R(k) and J (k)Φy as

R̃(k) = ΦRR(k)
r (12)

J̃ (k)Φy = ΦJJ (k)
r , (13)

where R(k)
r ∈ RnR and J

(k)
r ∈ RnJ×ny satisfy

R(k)
r = arg min

z∈RnR
‖R̂(k) − Φ̂Rz‖2 (14)

J (k)
r = arg min

z∈RnJ×ny
‖Ĵ (k)Φy − Φ̂Jz‖F (15)

2A POD basis of dimension n corresponds to first n left singular vectors of the snapshot matrix, where the snapshots
correspond to columns of the matrix.

3Note that the initial condition is the state at t = 0, while the initial guess yn(0) is taken here to be the solution at the
previous time-step (i.e. yn−1).
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The Gappy POD reconstruction method is optimal in the sense that the error measures in Eqs. (14)–(15)
monotonically decrease as the number of basis functions increases.

By introducing this approximation into Eqs. (9)–(10) and assuming ΦTJΦJ = InJ
, the Gauss–Newton

(tier II) iterations become the GNAT (tier III) iterations

p(k) = arg min
a∈Rny

‖AĴ (k)Φya+BR̂(k)‖2 (16)

y(k+1)
r = y(k)

r + α(k)p(k). (17)

Here, A = Φ̂J
+
∈ RnJ×ni , B = ΦTJΦRΦ̂R

+
∈ RnJ×ni and C+ denotes the pseudo (left)-inverse of a matrix

C. Note that the GNAT iterations require only:

1. computing R(k) and J (k)Φy at a few sample indices, I

2. computing the small-dimensional products AĴ (k)Φy, and BR̂(k)

3. solving the small least-squares problem (16).

Since none of these computations scale with N , the online cost of the method will be independent of N and
can therefore be very small.

III.D.2. Consistency

For the system approximation to be consistent, the bases ΦR and ΦJ should be constructed by POD using
specific snapshots. Ref. 1 provides three sufficient conditions (all three together are sufficient) on the
snapshots that ensure consistency in the system approximation. These conditions lead to a hierarchy of
snapshot collection procedures that trade consistency for offline cost/storage. Table 1 summarizes these
procedures.

Procedure identifier 0 1 2 3
Snapshots for R(k) R

(k)
I R

(k)
II R

(k)
II R

(k)
II

Snapshots for J (k)Φy R
(k)
I R

(k)
II

[
J (k)Φyp(k)

]
II

[
J (k)Φy

]
II

# simulations per training input 1 2 2 2
# snapshots per Newton iteration 1 1 2 ny + 1
# consistency conditions satisfied 0 1 2 3

Table 1. Snapshot collection procedures for the GNAT (tier III) model. The indicated snapshots are saved at each
Newton iteration. Subscripts I and II specify the tier of the model for which the snapshots are collected.

Procedure 3, which is consistent because it satisfies all three consistency conditions, is infeasible for most
problems as it requires storing ny + 1 vectors at each Newton step. Procedure 2, which is not consistent
but satisfies two consistency conditions, is computationally feasible as it requires saving only two vectors
per Newton step. However, it employs bases ΦR 6= ΦJ which 1) requires three POD computations offline
(Φy, ΦR, and ΦJ) and 2) can make it difficult to converge iterations (16)–(17), as the least-squares problem
tries to “match” quantities that lie in different subspaces.4 Procedure 1 is more economical than Procedure
2, as it requires saving only one vector per Newton iteration and computing only two POD bases offline.
Furthermore, it uses the same POD bases for the state and Jacobian, which can abet convergence of iterations
(16)–(17); yet, it only satisfies one consistency condition. Procedure 0, which is similar to the approach
commonly adopted in the literature,18,19,25,26,29 satisfies none of these consistency conditions, but requires
only one simulation (tier I) to be executed for each training input. For the above reasons, snapshot procedures
1 and 2 are recommended.

4This phenomenon has been observed in numerical experiments, although these results are not reported in this paper.
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III.E. Offline–online splitting

The steps to execute the GNAT method using a “global ROM” approach as follows.

Offline

1. Execute tier I and (if using snapshot methods 1, 2, or 3 from Table 1) tier II simulations at training
inputs Dtrain. Collect snapshots of the state, residual, and Jacobian during these training simulations.

2. Compute POD bases Φy, ΦR and ΦJ . To ensure uniqueness in the reconstructed gappy quantities,
nR ≥ ny and nJ ≥ ny are required.

3. Determine the set of ni indices I ≡ {i1, i2, . . . , ini} for reconstructing the nonlinear functions. Section
IV.B presents a method to do this for finite volume problems. To ensure uniqueness in the least-squares
gappy reconstruction, the conditions ni ≥ nR and ni ≥ nJ are required.

4. Compute the matrices A = Φ̂J
+

and B = ΦTJΦRΦ̂R
+

needed for online computations.

5. Generate sample mesh (see Section IV.A) and post-processing mesh (see Section IV.C).

Online

1. Evaluate the GNAT model for online inputs µ? ∈ D using Algorithm 1.

2. Compute outputs of interest G(y0, . . . , ynt , µ∗) as a post-processing step. Section IV.C discusses this
in the context of the proposed sample mesh concept.

Algorithm 1 Online step 1: evaluation of GNAT model
Input: Online matrices A and B, initial condition y0

Output: Generalized coordinates ynr , n = 1, . . . , nt

Define initial condition
for n = 0, . . . , nt − 1 do
k ← 0
y(0) ← yn, y(0)

r ← 0
while not converged do

Compute Ĵ (k)Φy and R̂(k)

Solve Eqs. (16)–(17) for y(k+1)
r .

y(k+1) ← y(k) + Φyy
(k+1)
r

k ← k + 1
end while
Write out yn+1

r = y
(k)
r for computing outputs in post-processing step

yn+1 ← y(k)

end for

IV. GNAT implementation: sample mesh concept

In order to solve the GNAT iterations in Eqs. (16)–(17) as efficiently as possible, this work introduces a
novel “sample mesh” approach for fluid dynamics problems discretized by the finite volume method.

In CFD codes, the most straightforward approach to solve Eqs. (16)–(17) is to load the entire computa-
tional mesh corresponding to the full-order model, update the state at the indices required to compute the
nonlinear functions J (k)Φ and R(k) at the sample indices, compute the nonlinear functions at the sample
indices, and finally solve (16)–(17). Unfortunately, this approach suffers from several major drawbacks:

• Storing the full-order mesh may require many proessors. This can unnecessarily tie up computational
resources, as most of the mesh is not used during online computations.

• Since the sample indices can be distributed across many processors, there may be significant communi-
cation overhead.
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• There will be a non-negligible computational cost arising from searching through large quantities of
memory (the uncomputed residual and Jacobian entries) in order to retrieve a small amount of data
from the sample indices.

In this context, there is also a problem with adapting a straightforward greedy approach for index
selection such as those suggested in Refs. [25, 29]. Namely, these approaches may be biased toward one of
the state variables. Since the state variables may exhibit different scales during the simulation (e.g. the
energy density may be have a larger magnitude than the mass density throughout the mesh), only indices
for the large-magnitude variables might be selected for sampling (e.g. the mass density indices may never
be sampled). This would lead to an unbalanced treatment of the state variables (e.g. the simulation might
never query mass conservation equations).

To mitigate these problems, this work proposes a node-based “sample mesh” approach. In this approach,
“sample nodes” are selected at which R(k) and J (k)Φy are evaluated for all state variables. The state must
be computed only at nodes that influence R(k) and J (k)Φy at the sample nodes. When second-order flux
reconstruction is employed, this means that the state must be computed for two layers of neighbor nodes
adjacent to sample nodes. This is shown in Figure 2. Computing the residual for all state variables at a
given sample node (red) requires the state to be computed at the following nodes: the sample node itself,
neighbors of the sample node (blue), and finally neighbors of those neighbors (green). As a result, many
nodes (depicted in black) are not needed by the GNAT method at all. In three dimensions, this effect is
exaggerated—only a very small fraction of the nodes may be actually needed to execute the GNAT method.

Figure 2. 2-D depiction of nodes required by the GNAT method. The residual must be evaluated for all state variables
at the red “sample node.” The state must be additionally evaluated at the blue and green nodes for second-order flux
reconstruction. Black nodes are not needed by the method for online computations.

IV.A. Procedure

This work proposes an efficient online implementation that consists of generating this sample mesh during
the offline stage (offline step 5 in Section III.E) . This sample mesh contains all the information charac-
teristic of typical meshes: 1) the locations of the sample nodes and neighboring nodes, 2) connectivities
(i.e. volumes), 3) boundary condition information if the sample node lies on a domain boundary, 4) “wall
distance” information for certain turbulence models. As a result, it can be treated like any (disconnected)
mesh: it can be partitioned, distributed across cores, etc. However, since this mesh is stripped of unneeded
nodes, it is very compact and fits on a small number of cores relative to the original mesh. This approach
is effective because:

• It minimizes computational resources. A small number cores is needed since only the required parts of
the domain are loaded into memory.

• It minimizes communication overhead. Since fewer cores are used, less data must be communicated
between processors.

• It minimizes computational complexity. Since only the required parts of the mesh are loaded, the
algorithm does not search through large quantities of unused data to extract the needed information.

• It treats all state variables in a balanced manner.
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Practically, implementing this approach is done using the following steps:

1. Choose sample nodes at which the residual will be evaluated. Section IV.B describes a node-based (not
index-based) greedy method to do so. Add these nodes to the node set.

2. Add layers of neighbor nodes to the node set as appropriate (e.g. two layers if a second-order flux
reconstruction is used). The state will be evaluated at these nodes.

3. Determine the connectivity between these nodes (i.e. volumes). Note that the mesh will be disconnected
since some sample nodes will be isolated spatially from others.

4. Find all edges/faces contained in the sample mesh that correspond to boundary conditions, and add
these to the mesh description.

In step 1, note that sample nodes can be chosen such that important parts of the domain are sensed. For
example, in order to handle boundary conditions, it is important that at least one sample node lies on the
boundary. If shape variables are included in the inputs, at least one sample node must be affected by the
shape change in order to detect variations in the input parameter. In this way, the sample nodes can be
viewed as sensors for the problem’s physics.

In addition to the sample mesh just described, solving the online stage of the GNAT method (i.e. solving
Eqs. (16)–(17)) requires matrices A and B and a list of the sample nodes.5

Once the sample mesh, online matrices, and sample nodes have been determined in the offline stage, the
GNAT model is defined and can be used to make online predictions.

IV.B. Sample node selection

This section proposes a sample index selection method that, rather than choosing sample indices individually,
chooses nodes in the mesh at which to sample the nonlinear functions. As previously discussed, this approach
treats all state variables in a balanced way. The number of sample indices corresponding to each sample
node is equal to the number of equations associated with each node. For example, this is often five for three-
dimensional fluid problems. Thus, the sample index set I consists of the indices associated with degrees of
freedom of the sample node set N ≡ {n1, n2, . . . , nnsample

}.
The sample node selection algorithm, which is a slight variant of that proposed in Ref. 1, is provided in

Algorithm 2. The method greedily chooses nodes that minimize the error in the gappy reconstruction of the
nonlinear functions.

IV.C. Output computation

Oftentimes, the analyst is interested in computing outputs that cannot be directly obtained from the online
evaluation of the GNAT model. In particular, computing the lift and drag requires performing calculations
with parts of the mesh in contact with the surface of the immersed body. Since the sample mesh is unlikely
to contain these portions of the mesh, it is not generally possible to compute such outputs online with the
sample mesh alone.

Instead, a post-processing stage (online step 2 in Section III.E) can be used to compute the outputs of
interest. This stage reads in the generalized POD coefficients for the state at each time step, assembles the
state on a post-processing mesh, and then computes the outputs of interest. Algorithm 3 describes these
steps.

The post-processing mesh contains only the part of the full mesh required for output computation. For
the lift and drag, this corresponds to a “surface mesh” consisting of all volumes (with associated nodes, etc.)
that are in contact with the immersed body. Similar to the sample mesh, the post-processing mesh minimizes
computational resources, communication overhead, and computational complexity during the post-processing
stage (which is online). Note that global outputs (e.g. total energy of the flow) do not lend themselves to
lightweight post-processing meshes; as a result, the post-processing stage may require more computational
resources in these scenarios.

5Recall that not all of the nodes in the sample mesh are sample nodes (e.g. Figure 2 shows that only the red node is sampled,
but all colored nodes are included in the sample mesh).
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Algorithm 2 Greedy algorithm for computing sample nodes
Input: ΦR, ΦJ , number of sample nodes nsample, number of basis vectors to use ngreed

Output: Sample nodes N
1: N = ∅
2: Determine number of greedy iterations P
3: Determine number of basis vectors to use per iteration Q

4:
[
R1 · · · RQ

]
←
[
φ1
R · · · φ

Q
R

]
5:
[
J1 · · · JQ

]
←
[
φ1
J · · · φ

Q
J

]
6: for p = 1, . . . , P do {Greedy iteration loop}
7: Determine number of sample nodes to add this iteration S
8: for s = 1, . . . , S do {Sample node loop}

9: n← arg max
l∈{1,...,nnodes}\N

Q∑
q=1
‖Rq [l] ‖2 +

Q∑
q=1
‖Jq [l] ‖2. Here, Rq [l] is the vector of R at indices associ-

ated with node l.
10: N ← N + n
11: end for
12: for q = 1, . . . , Q do
13: Rq ← φQp+qR −

[
φ1
R · · · φ

Qp
R

]
φQp+qRr , with φQp+qRr = arg min

a∈Rn

∥∥∥[φ̂1
R · · · φ̂

Qp
R

]
a− φ̂Qp+qR

∥∥∥
2

14: Jq ← φQp+qJ −
[
φ1
J · · · φ

Qp
J

]
φQp+qJr , with φQp+qJr = arg min

a∈Rn

∥∥∥[φ̂1
J · · · φ̂

Qp
J

]
a− φ̂Qp+qJ

∥∥∥
2

15: end for
16: end for

Algorithm 3 Online step 2: output computation
Input: Generalized coordinates ynr , n = 1, . . . , nt; initial condition y0 and state POD basis Φy in coordinates

of the post-processing mesh
Output: Outputs z

for n = 1, . . . , nt do
yn = y0 + Φyynr outputs

end for
Compute outputs z = G(y0, . . . , ynt , µ?).
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V. Applications and performance assessment

Ref. 1 demonstrated the capability of the GNAT method to generate solutions with sub-5% errors and
speedups exceeding 100 on structural dynamics problems discretized by the finite element method. This
section demonstrates the method’s ability to generate fast, accurate solutions for problems in fluid dynamics
that are discretized by the finite volume method.

In fact, this is the first time in the literature that results for a nonlinear model reduction method based
on function sampling have been shown for problems modeled with a finite volume discretization.

V.A. One-dimensional inviscid Burgers’ equation

To illustrate the GNAT method on a simple fluids problem, consider the one-dimensional inviscid Burgers’
equation20

∂U(x; t)
∂t

+ 0.5
∂
(
U2 (x; t)

)
∂x

= 0.02ebx (18)

with initial and boundary conditions

U(x, 0) = 1, ∀x ∈ [0, L] (19)
U(0, t) = a, ∀t > 0. (20)

The length is set to L = 100, the inlet boundary condition is a =
√

5, and the coefficient in the source
term is b = 0.02. This study employs 4001 cell centers located at xi = i(L/4000), i = 0, . . . , 4001, leading
to N = 4000 degrees of freedom. The problem is discretized using Godunov’s scheme, which leads to a
finite volume formulation. Note that since there is only one unknown per grid point, each sample index
corresponds to a single grid point.

V.A.1. Comparison with other methods

The following procedure is employed to compare the model reduction methods. First, the full-order model
(tier I) characterized by Eqs.(18)–(20) is solved and nt (consistent) snapshots xi = ynI − y0, 1 ≤ i ≤ nt
are collected. Then, the same problem (same boundary conditions, initial conditions, source term, etc.) is
solved using the reduced-order models. The Gauss–Newton (II:Gauss–Newton) method uses a POD basis
(computed using the above snapshots) of dimension 40; this is only 1% of the dimension of the full-order
model. The TPWL method employs a POD-Galerkin projection and uses 20 linearization points determined
using the trajectory curvature method,27 as this method outperformed the trajectory distance and residual
distance algorithms for this problem. The GNAT (III:GNAT(2)) method employs snapshot collection proce-
dure 2 and parameters nR = 130, nJ = 40, and ni = 130; a parametric study determined these to be optimal
for this problem.

Figure 3 shows the responses computed using these models. Table 2 provides the associated speedups
and errors in the time-averaged Euclidean norm of the state vector.

Method II:Gauss–Newton III:TPWL III:GNAT(2)
relative error 2.66% 7.24% 2.82%

speedup 1.19 19,445 59.7
Table 2. Comparison of model reduction methods on the 1-D inviscid Burgers’ equation. Relative error is the time-
averaged Euclidean norm of the error in the state vector.

While II:Gauss–Newton generates an accurate solutions with sub-3% errors, its speedup was modest: only
about 1.20. This illustrates the need for a system approximation to accelerate the solution computation. The
III:TPWL solution exhibits severe oscillations immediately; for many fluids applications, these oscillations
make the results unusable. This leads to a relative error of 7.24%; however, it generates an impressive
speedup of 19,445. The III:GNAT(2) solution is much more well-behaved than the TPWL response. The
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Figure 3. Performance of model reduction techniques on the one-dimensional Burgers’ equation. Conserved variable
plotted for t = 2.5, 10, 20, 30, 40, 50.

error (2.82%) is nearly as small as the Gauss–Newton solution, yet it generates a significant speedup of 59.7.
This illustrates the ability of the GNAT to generate fast, accurate solutions for nonlinear fluid dynamics
problems cast in the finite volume framework.

Figure 4 depicts the sample nodes for the sample mesh generated for this problem. Since Godunov’s
scheme is first-order in space and there is only one unknown per grid point, generating a sample mesh for
this problem is tantamount to selecting grid points and then including the grid point’s neighbors. For this
problem, the selected nodes are concentrated near the inlet boundary condition. This can be attributed to
the fact that the strength of the shock dissipates as it moves downstream (see Figure 4). Thus, more severe
nonlinearities occur upstream, and the sample index selection algorithm identifies this region as requiring
the most sampling.

spatial variable x

12.5 25 37.5 50 62.5 75 87.5 100

Figure 4. Sample nodes selected for the sample mesh for the one-dimensional Burgers’ equation.
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V.A.2. Prediction

This study tests the predictive ability of GNAT on the one-dimensional Burgers’ equation. The input
parameters are chosen to be the inlet boundary condition parameter a in Eq. (20) and the coefficient b in
the source term of Eq. (18). Figure 5 depicts the training and online inputs used for this study. Since the
GNAT model uses snapshot procedure 2, both the tier I and tier II models are run at all training inputs
to generate the appropriate snapshots. This leads to a “global” GNAT model constructed from snapshots
generated at three different training inputs.
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Figure 5. Offline and online inputs for GNAT applied to Burgers’ equation

Figure 6 displays the results for this predictive problem; here, the full-order response at the online input
is shown for comparison purposes. Note that the GNAT prediction closely matches the full-order response,
producing an relative error of only 1.43% in the time-averaged Euclidean norm of the state vector. The
speedup for the GNAT simulation compared with the full-order simulation is 9.4.

Note that although oscillations in the GNAT response are apparent at t = 2.5, they dissipate over time;
this occurs in part because the POD subspace restricts the evolution of the state in such a way that these
oscillations do not grow. This example illustrates the predictive capability of the GNAT method, as it
generates a fast, accurate responses at a previously unqueried point in the input parameter space.

V.B. Ahmed body problem

To demonstrate the performance of the GNAT model reduction method on a large-scale, nonlinear fluid
dynamics problem, consider as an example the airflow around the Ahmed body shown in Figure 7. This
problem, which is a benchmark for turbulent flows around automobiles, was initially investigated by Ahmed
et. al30 in the 1980s. The mesh, shown in Figure 8, consists of 2,890,434 nodes and 17,017,090 tetrahedral
volumes, resulting in N = 17, 342, 604 degrees of freedom. A symmetry plane is employed to exploit the
symmetry of the body about the x–z plane. For all experiments, the slant angle is fixed at ϕ = 20 deg. All
numerical results presented in this section are not predictive—the online problem is identical to the training
problem. As will be shown, re-creating the training results is not trivial for the large-scale, highly nonlinear,
compressible, turbulent flow considered herein; future work will investigate predictive scenarios.

The full-order model corresponds to an unsteady Navier-Stokes simulation with DES turbulence model,
Reichardt’s wall law, V4 dissipation scheme, free-stream velocity V∞ = 60 m/s, and Reynolds number
Re = ρ∞V∞

µ∞
= 4.29 × 106. The simulation employs a second-order accurate linear flux reconstruction and

the second-order accurate implicit three-point backward difference scheme for time integration. A uniform
step size of 8× 10−5 seconds is taken, corresponding to a maximum CFL number of roughly 2000. Newton’s
method is employed to solve the nonlinear system of equations arising at each time step, and convergence
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Figure 6. Predictive results for GNAT applied to Burgers’ equation

is declared when the residual at the kth iteration satisfies R(k) ≤ 0.001R(0). A steady-state simulation
computes the initial condition. This steady-state computation is characterized by the same parameters as
above, except that it employs local time-stepping with a maximum CFL number of 200, the first-order
implicit backward Euler time integration scheme, and only one Newton iteration per (pseudo) time step. For
this problem, the output of interest is the drag coefficient CD = D

1
2ρ∞V

2
∞5.6016×10−2m2 around the body.

All simulations are executed using AERO-F, which is a domain-decomposition-based, parallel, three-
dimensional, compressible, Euler/Navier-Stokes solver developed by Farhat and co-workers. Simulation
times are reported for a Linux cluster containing compute nodes with 16 GB of memory. Each node consists
of two quad-core Intel Xeon E5345 processors running at 2.33 GHz inside a DELL Poweredge 1950. The
cluster’s interconnect is Cisco DDR InfiniBand. All simulation times are reported for the solution of the
governing equations and the output of the state vector (full-order model) or generalized state coordinates
(reduced-order models); a separate post-processing step computes outputs.

Figure 7. Ahmed body geometry (from Ref. 31).
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(a) Entire computational mesh (b) Computational mesh near the body

Figure 8. Ahmed body mesh for ϕ = 20 deg with 2,890,434 nodes and 17,017,090 tetrahedral volumes.

V.B.1. Comparison with experiment

Ref. 30 reports an experimental drag coefficient of 0.250 around the Ahmed body for a slant angle of ϕ =
20 deg. Figure 9 shows the time evolution of the drag coefficient generated by the full-order computational
model for the same configuration. The time-averaged drag coefficient computed using the trapezoidal rule
is 0.2524. This corresponds to a relative error of 0.95% with respect to the experimental results. As this
error is below 1%, we declare this computational model to match the experimental results for the purpose
of computing the drag coefficient.

This full-order model response is generated in 4.78 × 104 seconds (approximately 13.3 hours) using 512
cores, for a total cost in computational resources of 6,798 core-hours.
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Figure 9. Drag coefficient generated by full-order model.

V.B.2. Snapshot method study

First, the GNAT method is analyzed for different residual/Jacobian snapshot procedures. Recall from
Section III.D.2 that snapshot procedure 0 is inconsistent, but is similar to the approach most often taken in
the literature. Procedure 1 satisfies one consistency condition.
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To build the POD basis for the state, consistent snapshots {yn − y0}nt
n=1 with nt = 1252 are collected

during full-order simulation. Then, these snapshots are normalized such that each snapshot has unit magni-
tude and a POD basis is computed via the singular value decomposition. The number of POD basis vectors
for the state is set to ny = 283, which corresponds to 99.99% of the total statistical energy of the snapshots
as measured by the sum of the squares of the singular values. All numerical studies in this section use this
POD basis for the state.

To compute the drag around the Ahmed body for the GNAT simulations, the post-processing surface
mesh shown in Figure 11 is used. It is characterized by 124,047 nodes (4.3% nodes of original mesh) and
492,445 tetrahedral volumes (2.9% volumes of original mesh). For all simulations, the post-processing output
computation step (see Section IV.C for details) took 12.2 minutes using 4 cores, or 9.7 minutes using 8 cores.

The sample meshes generated for snapshot procedures 0 and 1 using Algorithm 2 with ngreed = 219 and
nsample = 378 are depicted in Figure 10. Both meshes are characterized by only 378 sample nodes; thus, the
residual and Jacobian are computed at only 0.013% of the nodes in the original mesh. First, note that the
algorithm selects one sample node from the inlet boundary face; this is designed into the algorithm to enable
the GNAT model to enforce boundary conditions for the problem. Next, notice that the algorithm chooses
sample nodes from three regions of the domain: the wake region behind the body, and the regions behind the
two cylidrical experimental supports. This means that, on average, the magnitude of the residual is highest
in these regions during the training simulations. This is consistent with the fact that the fluid flow in these
parts of the domain is highly nonlinear and is characterized by separated flow with strong vorticity.

The GNAT models employ nJ = nR = 1514, which corresponds to 99.99% of the energy in the snapshots
of the residual collected during the tier II Gauss–Newton simulation. As with the snapshots of the state,
the residual snapshots are normalized. Both GNAT simulations are executed using only 4 cores (compared
with 512 cores used for the full-order model). This is possible because the sample mesh enables a very small
subset of the computational domain to be loaded online.

Figure 12 and Table 3 contain the results for these simulations. Here (and in all remaining sections), the
relative error is measured as:

relative error =

1
nt

nt∑
n=1
|CI
D(n)− CROM

D (n)|

max
n

CI
D(n)−min

n
CI
D(n)

, (21)

where CI
D(n) is the drag coefficient at time step n computed by the full-order (tier I) model, and CROM

D is
the drag coefficient computed by a reduced-order model. Note that both snapshot procedures 0 and 1 lead
to GNAT models characterized by speedups (as measured in total computational resources) of at least 231.
This occurs largely due to the drastic reduction in cores made possible by the sample mesh.

Next, notice that snapshot procedure 1 produces a GNAT model with a nearly exact response; snapshot
procedure 0 leads to a significantly less accurate solution. Furthermore, snapshot procedure 1 leads to a
much faster simulation time, as it requires many fewer Newton iterations for convergence at each time step.
This illustrates the importance of consistency when constructing a reduced-order model.

snapshot procedure relative error
average Newton

time, hours
speedup in

iterations per computational
time step resources

0 7.43% 6.47 7.37 231
1 0.68% 2.75 3.88 438

Table 3. Performance of GNAT using different snapshot procedures for 378 sample nodes. Simulation times reported
using 4 cores.

V.B.3. Sample node study

This study analyzes the effect of the number of sample nodes on GNAT performance. Three sample meshes
are generated using Algorithm 2 with ngreed = 219 for 253 sample nodes, 378 sample nodes, and 505 sample
nodes. Figure 13 displays these sample meshes and Table 4 reports their attributes. Note that all sample
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meshes employ less than 0.7% of the nodes from the original mesh and less than 0.4% of the tetrahedral
volumes from the original mesh. The GNAT models for these simulations employ the same POD bases with
nJ = nR = 1514. Since there are 6 unknowns per node (five conserved state variables plus one turbulence
model variable), the mesh with 253 sample nodes corresponds (roughly) to interpolation of the nonlinear
functions (253 × 6 = 1518 rows and 1514 columns in the Φ̂R and Φ̂J matrices). 378 sample nodes gives a
least-squares “aspect ratio” of 1.5, where the aspect ratio is defined by the number of rows divided by the
number of columns in the Φ̂R and Φ̂J . Finally, 505 sample nodes leads to a value of 2.0 for this aspect ratio.

# sample nodes # nodes # primal volumes fraction of nodes fraction of volumes
from full mesh from full mesh

253 12,808 41,014 0.44% 0.24%
378 17,096 56,280 0.59% 0.33%
505 19,822 67,082 0.69% 0.39%

Table 4. Sample mesh attributes for different numbers of sample nodes

Figure 12 and Table 5 contain the results for the GNAT model using these sample meshes. All sample
meshes lead to a relative error less than 1%. Also, as sample nodes are added, the average number of Newton
iterations decreases, indicating that adding sample nodes improves convergence. However, the fastest wall
time performance is achieved for the smallest number of sample nodes (253); adding sample nodes increases
simulation time for this problem because, even though it leads to fewer Newton steps, the residual and
Jacobian are computed at more nodes.

These results imply that interpolation of the nonlinear functions (as is prescribed by the approaches
taken in Refs. [18, 19, 25, 26, 29]) is not always the most computationally efficient approach. Rather, adding
sample nodes can improve convergence and accuracy.

# sample nodes relative error
average Newton

time, hours
speedup in

iterations per computational
time step resources

253 0.79% 4.38 3.77 452
378 0.68% 2.75 3.88 438
505 0.75% 2.25 4.22 403

Table 5. Performance of GNAT with snapshot procedure 1 for different numbers of sample nodes.

V.B.4. Parallel performance study

This section tests the parallel performance of the GNAT method. Table 6 presents timing results for the
GNAT method using snapshot procedure 1 with 378 sample nodes and a different number of computing
cores. All tests employ the same number of subdomains in the sample mesh partition (as computed by
METIS) as cores; the exception is the 1-core case, which employs 2 subdomains.

# cores time, hours computational resources, speedup in speedup in
core-hours simulation time computational resources

1 16.1 16.1 0.83 422
2 8.74 17.5 1.52 388
4 3.88 15.5 3.43 438
8 2.50 20.0 5.32 340
12 1.94 23.3 6.86 292
16 2.08 33.3 6.39 204

Table 6. Simulation times for GNAT with snapshot procedure 1 using 378 sample nodes for different numbers of cores.
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These results indicate that the fastest wall time is obtained for 12 cores. This leads to a speedup as
measured in wall time of 6.86. The simulation with 4 cores has the greatest speedup as measured in total
computational resources; this value is 438.

This study demonstrates that the GNAT method is capable of generating very high speedups as measured
in total computational resources for large-scale problems. Speedups in pure wall time—while non-negligible—
are more modest. This occurs because the GNAT model corresponds to a “small” problem that saturates
parallelism for a relatively small number of cores (12 in this case); when cores are added beyond this point,
the additional overhead overrides added computing power.

V.B.5. Comparison with other function sampling methods

This study compares the performance of various complexity reduction techniques. All function sampling
techniques are tested using the same POD basis for the state and the same sample mesh. The sample mesh
uses 378 nodes and is depicted in Figure 10(b). The methods that are tested are:

1. GNAT with snapshot procedure 1 and nR = nJ = 1514.

2. Collocation of the nonlinear equations followed by a Galerkin projection of the resulting overdetermined
system of 2268 nonlinear equations (368 sample nodes × 6 equations per node) in ny = 283 unknowns.
Ref. 22 introduced this method.

3. Collocation followed by a least-squares solution of the overdetermined system. Ref. 21 proposed this
approach.

4. A discrete empirical interpolation (DEIM)-like approach. Ref. 25 presented the DEIM approach. The
specific approach tested here employs snapshot procedure 0 (residual snapshots collected during the
full-order simulation) and nR = nJ = 2268, which leads to interpolation of the residual and Jacobian.
The tested approach employs the Gauss–Newton solution of the overdetermined equations as opposed
to the Galerkin projection; this is done to isolate the effect of the complexity reduction technique on
performance.

Figure 15 contains the drag coefficient responses generated using all complexity reduction methods. Both
collocation approaches generate negative pressures after only a few time steps; at this point, the simulation
stops. This demonstrates that collocation is insufficient for characterizing the behavior of the full nonlinear
system, as it does not approximate the nonlinear functions in the entire domain.

The DEIM-like approach also does not perform well, as the Newton iterations begin to generate zero
search directions after only a few time steps. This is likely due to two factors. First, the snapshots employed
by DEIM are not consistent. As was shown in Section V.B.2, using inconsistent snapshots for the residual
and Jacobian can lead to poor results. Secondly, the method employs interpolation as opposed to a least-
squares fit of the nonlinear functions. Section V.B.3 showed that this can hamper convergence; in this case,
the effect is more dramatic, as the method is likely “overfitting” the nonlinear functions using low-energy
POD basis functions.6

VI. Conclusions

This work presented several developments in the GNAT nonlinear model reduction method. In particular,
the sample mesh concept was introduced, as well as a post-processing output computation step. As was
demonstrated in the Ahmed body example, both of these developments enabled the GNAT model to use many
fewer computational cores compared with the full-order model. This is crucial to the method’s performance
on large-scale problems.

Results on the one-dimensional inviscid Burgers’ equation highlighted GNAT’s favorable performance
compared with the TPWL method. The predictive ability of GNAT was also demonstrated, as a speedup of
nearly 10 was achieved with a relative error less than 2% at a non-training point in the input space.

Numerical experiments for the compressible, turbulent flow around the Ahmed body on a model with
millions of unknowns were also executed. First, these results showed that consistency seems to be important

6Recall that the DEIM-like approach employs 2268 basis vectors as opposed to GNAT, which uses 1514 basis vectors.
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when constructing reduced-order models: snapshot method 0 (inconsistent) generated 10 times greater error
than snapshot method 1 (consistent). Second, it was shown that least-squares reconstruction of the nonlinear
functions can perform better than interpolation. This was apparent, as adding sample nodes (with other
parameters held fixed) decreased the average number of Newton steps and led to improvements in error
compared with the interpolatory approach. Finally, the GNAT method performed favorably compared with
collocation and discrete empirical interpolation-like approaches; for a fixed sample mesh, GNAT was the
only method that generated accurate results.

Future work includes pursuing predictive scenarios for large-scale problems, devising a method for choos-
ing GNAT parameters (e.g. number of basis vectors) a priori, and investigating methods for further decreas-
ing the wall time (not just computational resources) required for GNAT simulations.
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(a) Sample mesh generated using snapshot procedure 0

(b) Sample mesh generated using snapshot procedure 1

Figure 10. Sample meshes generated using the specified snapshot collection procedure. Both meshes contain 378 sample
nodes.
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Figure 11. Surface mesh for post-processing with 124,047 nodes and 492,445 tetrahedral volumes.

 

 

GNAT(1)
GNAT(0)
full-order model

d
ra

g
co

effi
ci

en
t,

C
D

time, seconds
0 0.02 0.04 0.06 0.08 0.1

0.22

0.23

0.24

0.25

0.26

0.27

0.28

Figure 12. Drag coefficient generated by the GNAT model using 378 sample nodes and different snapshot procedures.
GNAT(i) refers to GNAT with snapshot procedure i.

(a) 253 sample nodes (b) 378 sample nodes (c) 505 sample nodes

Figure 13. Sample meshes generated using snapshot method 1.
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Figure 14. Drag coefficients generated by GNAT with snapshot procedure 1 for different numbers of sample nodes.
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Figure 15. Drag coefficients generated by different complexity reduction techniques using the same POD basis and
sample mesh with 378 sample nodes.
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